Search This Blog

Saturday, January 15, 2011

Core Java:Loop

Control Flow Statements
The statements inside your source files are generally executed from top to bottom, in the order that they appear. Control flow statements, however, break up the flow of execution by employing decision making, looping, and branching, enabling your program to conditionally execute particular blocks of code. This section describes the decision-making statements (if-then, if-then-else, switch), the looping statements (for, while, do-while), and the branching statements (break, continue, return) supported by the Java programming language.
The if-then and if-then-else Statements

The if-then Statement

The if-then statement is the most basic of all the control flow statements. It tells your program to execute a certain section of code only if a particular test evaluates to true. For example, the Bicycle class could allow the brakes to decrease the bicycle's speed only if the bicycle is already in motion. One possible implementation of the applyBrakes method could be as follows:
void applyBrakes(){
     if (isMoving){  // the "if" clause: bicycle must be moving
          currentSpeed--; // the "then" clause: decrease current speed
     }
}
If this test evaluates to false (meaning that the bicycle is not in motion), control jumps to the end of the if-then statement. In addition, the opening and closing braces are optional, provided that the "then" clause contains only one statement:

void applyBrakes(){
     if (isMoving) currentSpeed--; // same as above, but without braces 
}
Deciding when to omit the braces is a matter of personal taste. Omitting them can make the code more brittle. If a second statement is later added to the "then" clause, a common mistake would be forgetting to add the newly required braces. The compiler cannot catch this sort of error; you'll just get the wrong results.

The if-then-else Statement

The if-then-else statement provides a secondary path of execution when an "if" clause evaluates to false. You could use an if-then-else statement in the applyBrakes method to take some action if the brakes are applied when the bicycle is not in motion. In this case, the action is to simply print an error message stating that the bicycle has already stopped.
void applyBrakes(){
     if (isMoving) {
          currentSpeed--;
     } else {
          System.err.println("The bicycle has already stopped!");
     } 
}
The following program, IfElseDemo, assigns a grade based on the value of a test score: an A for a score of 90% or above, a B for a score of 80% or above, and so on.
class IfElseDemo {
    public static void main(String[] args) {

        int testscore = 76;
        char grade;

        if (testscore >= 90) {
            grade = 'A';
        } else if (testscore >= 80) {
            grade = 'B';
        } else if (testscore >= 70) {
            grade = 'C';
        } else if (testscore >= 60) {
            grade = 'D';
        } else {
            grade = 'F';
        }
        System.out.println("Grade = " + grade);
    }
}
The output from the program is:
    Grade = C
You may have noticed that the value of testscore can satisfy more than one expression in the compound statement: 76 >= 70 and 76 >= 60. However, once a condition is satisfied, the appropriate statements are executed (grade = 'C';) and the remaining conditions are not evaluated.

The switch Statement
Unlike if-then and if-then-else, the switch statement allows for any number of possible execution paths. A switch works with the byte, short, char, and int primitive data types. It also works with enumerated types (discussed in Classes and Inheritance) and a few special classes that "wrap" certain primitive types: Character, Byte, Short, and Integer (discussed in Simple Data Objects ). The following program, SwitchDemo, declares an int named month whose value represents a month out of the year. The program displays the name of the month, based on the value of month, using the switch statement.
class SwitchDemo {
    public static void main(String[] args) {

        int month = 8;
        switch (month) {
            case 1:  System.out.println("January"); break;
            case 2:  System.out.println("February"); break;
            case 3:  System.out.println("March"); break;
            case 4:  System.out.println("April"); break;
            case 5:  System.out.println("May"); break;
            case 6:  System.out.println("June"); break;
            case 7:  System.out.println("July"); break;
            case 8:  System.out.println("August"); break;
            case 9:  System.out.println("September"); break;
            case 10: System.out.println("October"); break;
            case 11: System.out.println("November"); break;
            case 12: System.out.println("December"); break;
            default: System.out.println("Invalid month.");break;
        }
    }
}
In this case, "August" is printed to standard output.
The body of a switch statement is known as a switch block. Any statement immediately contained by the switch block may be labeled with one or more case or default labels. The switch statement evaluates its expression and executes the appropriate case.
Of course, you could also implement the same thing with if-then-else statements:
int month = 8;
if (month == 1) {
    System.out.println("January");
} else if (month == 2) {
    System.out.println("February");
}
. . . // and so on
Deciding whether to use if-then-else statements or a switch statement is sometimes a judgment call. You can decide which one to use based on readability and other factors. An if-then-else statement can be used to make decisions based on ranges of values or conditions, whereas a switch statement can make decisions based only on a single integer or enumerated value. Another point of interest is the break statement after each case. Each break statement terminates the enclosing switch statement. Control flow continues with the first statement following the switch block. The break statements are necessary because without them, case statements fall through; that is, without an explicit break, control will flow sequentially through subsequent case statements. The following program, SwitchDemo2, illustrates why it might be useful to have case statements fall through:
class SwitchDemo2 {
    public static void main(String[] args) {

        int month = 2;
        int year = 2000;
        int numDays = 0;

        switch (month) {
            case 1:
            case 3:
            case 5:
            case 7:
            case 8:
            case 10:
            case 12:
                numDays = 31;
                break;
            case 4:
            case 6:
            case 9:
            case 11:
                numDays = 30;
                break;
            case 2:
                if ( ((year % 4 == 0) && !(year % 100 == 0))
                     || (year % 400 == 0) )
                    numDays = 29;
                else
                    numDays = 28;
                break;
            default:
                System.out.println("Invalid month.");
                break;
        }
        System.out.println("Number of Days = " + numDays);
    }

}
This is the output from the program.
    Number of Days = 29
Technically, the final break is not required because flow would fall out of the switch statement anyway. However, we recommend using a break so that modifying the code is easier and less error-prone. The default section handles all values that aren't explicitly handled by one of the case sections.

The while and do-while Statements

The while statement continually executes a block of statements while a particular condition is true. Its syntax can be expressed as:
while (expression) {
     statement(s)
}
The while statement evaluates expression, which must return a boolean value. If the expression evaluates to true, the while statement executes the statement(s) in the while block. The while statement continues testing the expression and executing its block until the expression evaluates to false. Using the while statement to print the values from 1 through 10 can be accomplished as in the following WhileDemo program:
class WhileDemo {
     public static void main(String[] args){
          int count = 1;
          while (count < 11) {
               System.out.println("Count is: " + count);
               count++;
          }
     }
}
You can implement an infinite loop using the while statement as follows:
while (true){
    // your code goes here
}
The Java programming language also provides a do-while statement, which can be expressed as follows:
do {
     statement(s)
} while (expression);
The difference between do-while and while is that do-while evaluates its expression at the bottom of the loop instead of the top. Therefore, the statements within the do block are always executed at least once, as shown in the following DoWhileDemo program:
class DoWhileDemo {
     public static void main(String[] args){
          int count = 1;
          do {
               System.out.println("Count is: " + count);
               count++;
          } while (count <= 11);
     }
}


The for Statement
The for statement provides a compact way to iterate over a range of values. Programmers often refer to it as the "for loop" because of the way in which it repeatedly loops until a particular condition is satisfied. The general form of the for statement can be expressed as follows:
for (initialization; termination; increment) {
    statement(s)
}
When using this version of the for statement, keep in mind that:
  • The initialization expression initializes the loop; it's executed once, as the loop begins.
  • When the termination expression evaluates to false, the loop terminates.
  • The increment expression is invoked after each iteration through the loop; it is perfectly acceptable for this expression to increment or decrement a value.
The following program, ForDemo, uses the general form of the for statement to print the numbers 1 through 10 to standard output:
class ForDemo {
     public static void main(String[] args){
          for(int i=1; i<11; i++){
               System.out.println("Count is: " + i);
          }
     }
}
The output of this program is:
Count is: 1
Count is: 2
Count is: 3
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9
Count is: 10
Notice how the code declares a variable within the initialization expression. The scope of this variable extends from its declaration to the end of the block governed by the for statement, so it can be used in the termination and increment expressions as well. If the variable that controls a for statement is not needed outside of the loop, it's best to declare the variable in the initialization expression. The names i, j, and k are often used to control for loops; declaring them within the initialization expression limits their life span and reduces errors. The three expressions of the for loop are optional; an infinite loop can be created as follows:
for ( ; ; ) {    // infinite loop
    
     // your code goes here
}
The for statement also has another form designed for iteration through Collections and arrays This form is sometimes referred to as the enhanced for statement, and can be used to make your loops more compact and easy to read. To demonstrate, consider the following array, which holds the numbers 1 through 10:

int[] numbers = {1,2,3,4,5,6,7,8,9,10};
The following program, EnhancedForDemo, uses the enhanced for to loop through the array:

class EnhancedForDemo {
     public static void main(String[] args){
          int[] numbers = {1,2,3,4,5,6,7,8,9,10};
          for (int item : numbers) {
            System.out.println("Count is: " + item);
          }
     }
}
In this example, the variable item holds the current value from the numbers array. The output from this program is the same as before:
Count is: 1
Count is: 2
Count is: 3
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9
The for Statement
The for statement provides a compact way to iterate over a range of values. Programmers often refer to it as the "for loop" because of the way in which it repeatedly loops until a particular condition is satisfied. The general form of the for statement can be expressed as follows:
for (initialization; termination; increment) {
    statement(s)
}
When using this version of the for statement, keep in mind that:
  • The initialization expression initializes the loop; it's executed once, as the loop begins.
  • When the termination expression evaluates to false, the loop terminates.
  • The increment expression is invoked after each iteration through the loop; it is perfectly acceptable for this expression to increment or decrement a value.
The following program, ForDemo, uses the general form of the for statement to print the numbers 1 through 10 to standard output:
class ForDemo {
     public static void main(String[] args){
          for(int i=1; i<11; i++){
               System.out.println("Count is: " + i);
          }
     }
}
The output of this program is:
Count is: 1
Count is: 2
Count is: 3
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9
Count is: 10
Notice how the code declares a variable within the initialization expression. The scope of this variable extends from its declaration to the end of the block governed by the for statement, so it can be used in the termination and increment expressions as well. If the variable that controls a for statement is not needed outside of the loop, it's best to declare the variable in the initialization expression. The names i, j, and k are often used to control for loops; declaring them within the initialization expression limits their life span and reduces errors. The three expressions of the for loop are optional; an infinite loop can be created as follows:
for ( ; ; ) {    // infinite loop
    
     // your code goes here
}
The for statement also has another form designed for iteration through Collections and arrays This form is sometimes referred to as the enhanced for statement, and can be used to make your loops more compact and easy to read. To demonstrate, consider the following array, which holds the numbers 1 through 10:

int[] numbers = {1,2,3,4,5,6,7,8,9,10};
The following program, EnhancedForDemo, uses the enhanced for to loop through the array:

class EnhancedForDemo {
     public static void main(String[] args){
          int[] numbers = {1,2,3,4,5,6,7,8,9,10};
          for (int item : numbers) {
            System.out.println("Count is: " + item);
          }
     }
}
In this example, the variable item holds the current value from the numbers array. The output from this program is the same as before:
Count is: 1
Count is: 2
Count is: 3
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9
Count is: 10
We recommend using this form of the for statement instead of the general form whenever possible.
Count is: 10
We recommend using this form of the for statement instead of the general form whenever possible.

10 comments:

  1. kiranvarma - npeducations
    kiranvarma3@gmail.com
    http://www.npeducations.com


    comments:Thank for the code! its really helpful. very clean and neat explanation

    good post! thank you

    ReplyDelete
  2. I got a job by saying this answer in my last interview. thanks for awesome help.
    I got more idea about Java from Besant Technologies. If anyone wants to get Java Training in Chennai visit Besant Technologies.

    ReplyDelete
  3. Nice to see the best portal for Java Tutorials . I will re visit again to follow all updates .

    Java Tutorial

    ReplyDelete
  4. Wow it is really wonderful and awesome thus it is veWow it is really wonderful and awesome thus it is very much useful for me to understand many concepts and helped me a lot. it is really explainable very well and i got more information from your site.ry much useful for me to understand many concepts and helped me a lot. it is really explainable very well and i got more information from your site.
    .Hadoop Training in Bangalore

    ReplyDelete
  5. Excellent information with unique content and it is very useful to know about the salesforce.salesforce developer training in bangalore

    ReplyDelete
  6. Great blog thanks for sharing Masters of building brands, Adhuntt Media is making waves in the Chennai digital market! Known for their out of their box ideas, if a creative overhaul for your brand is what you need, you’ve come to the right place. Right from Search Engine Optimization-SEO to Social Media Marketing, Adhuntt Media is your pitstop for original brand identity creation from scratch. Let’s boost your sales right now at Adhuntt Media.
    social media marketing company in chennai

    ReplyDelete
  7. Excellent blog thanks for sharing Karuna Nursery Gardens provides you with the best nursery solutions for setting you up with a glamorous landscape. That’s right, you have finally found the perfect nursery to set you up with the best house garden in Chennai.
    plant nursery in chennai

    ReplyDelete